Lesson 12. Dynamic Programming - Review

- Recall from Lessons 5-11:
 - A **dynamic program** models situations where decisions are made in a <u>sequential</u> process in order to optimize some objective
 - **Stages** t = 1, 2, ..., T
 - \diamond stage *T* \leftrightarrow end of decision process
 - **States** $n = 0, 1, ..., N \leftarrow$ possible conditions of the system at each stage
 - Two representations: **shortest/longest path** and **recursive**

Shortest/longest path		Recursive
node t_n	\leftrightarrow	state <i>n</i> at stage <i>t</i>
$edge(t_n,(t+1)_m)$	\leftrightarrow	allowable decision x_t in state n at stage t that results in being in state m at stage $t + 1$
length of edge $(t_n, (t+1)_m)$	\leftrightarrow	contribution of decision x_t in state n at stage t that results in being in state m at stage $t + 1$
length of shortest/longest path from node t_n to end node	\leftrightarrow	value-to-go function $f_t(n)$
length of edges (T_n, end)	\leftrightarrow	boundary conditions $f_T(n)$
shortest or longest path	\leftrightarrow	recursion is min or max:
		$f_t(n) = \min_{x_t \text{ allowable}} \left\{ \begin{pmatrix} \text{ contribution of } \\ \text{ decision } x_t \end{pmatrix} + f_{t+1} \begin{pmatrix} \text{ new state } \\ \text{ resulting } \\ \text{ from } x_t \end{pmatrix} \right\}$
source node 1 _n	\leftrightarrow	desired value-to-go function value $f_1(n)$

Oil capacity per day	Gas capacity per day	Building cost (\$ millions)
0	0	0
1000	0	5
0	1000	7
1000	1000	14

Example 1. Simplexville Oil needs to build capacity to refine 1,000 barrels of oil and 2,000 barrels of gasoline per day. Simplexville can build a refinery at 2 locations. The cost of building a refinery is as follows:

The problem is to determine how much capacity should be built at each location in order to minimize the total building cost. Assume that the capacity requirements must be met exactly.

- a. Formulate this problem as a dynamic program by giving its shortest path representation.
- b. Formulate this problem as a dynamic program by giving its recursive representation. Solve the dynamic program.